Lowest Common Ancestor of Tree
leetcode235. Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
分析
-
如果p和q比root小, 则LCA必定在左子树
-
如果p和q比root大, 则LCA必定在右子树
-
如果p和q其中一个比root大,一个比root小, 则root即为LCA.
代码
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(!root || !p || !q)
return NULL;
if(max(p->val,q->val) < root->val){
return lowestCommonAncestor(root->left,p,q);
}else if(min(p->val,q->val) > root->val){
return lowestCommonAncestor(root->right,p,q);
}else{
return root;
}
}
};
236. Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______
/ \
___5__ ___1__
/ \ / \
6 _2 0 8
/ \
7 4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
分析
leetcode235题的升级版
转换为链表最后相同的节点
-
如果是普通二叉树, 而不是BST. 则应该遍历节点, 记录下从root到p节点和q节点的路径.
-
比较路径,最后一个相同的节点便是LCA.
代码
class Solution {
public:
bool GetNodePath(TreeNode* root, TreeNode* pNode,list<TreeNode*> &path){
path.push_back(root);
if(root == pNode){
return true;
}
bool found = false;
if(!found && root->left){
found = GetNodePath(root->left,pNode,path);
}
if(!found && root->right){
found = GetNodePath(root->right,pNode,path);
}
if(!found){
path.pop_back();
}
return found;
}
TreeNode* GetLastCommonNode(const list<TreeNode*>& path1,const list<TreeNode*>& path2){
TreeNode* pLast =NULL;
list<TreeNode*>::const_iterator iterator1 = path1.begin();
list<TreeNode*>::const_iterator iterator2 = path2.begin();
while(iterator1 != path1.end() && iterator2 != path2.end()){
if(*iterator1 == *iterator2 ){
pLast = *iterator1;
}
else break;
iterator1++;
iterator2++;
}
return pLast;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == NULL || p == NULL || q == NULL){
return NULL;
}
list<TreeNode*> pathp;
list<TreeNode*> pathq;
GetNodePath(root,p,pathp);
GetNodePath(root,q,pathq);
return GetLastCommonNode(pathp,pathq);
}
};
扩展 Lowest Common Ancestor of Tree
代码
class Solution {
public:
bool GetNodePath(TreeNode* root, TreeNode* pNode,list<TreeNode*> &path){
path.push_back(root);
if(root == pNode){
return true;
}
bool found = false;
vector<TreeNode*>::iterator i = root->m_vChildren.begin();
while(!found && i!=root->m_vChildren.end()){
found = GetNodePath(*i,pNode,path);
i++;
}
if(!found){
path.pop_back();
}
return found;
}
TreeNode* GetLastCommonNode(const list<TreeNode*>& path1,const list<TreeNode*>& path2){
TreeNode* pLast =NULL;
list<TreeNode*>::const_iterator iterator1 = path1.begin();
list<TreeNode*>::const_iterator iterator2 = path2.begin();
while(iterator1 != path1.end() && iterator2 != path2.end()){
if(*iterator1 == *iterator2 ){
pLast = *iterator1;
}
else break;
iterator1++;
iterator2++;
}
return pLast;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == NULL || p == NULL || q == NULL){
return NULL;
}
list<TreeNode*> pathp;
list<TreeNode*> pathq;
GetNodePath(root,p,pathp);
GetNodePath(root,q,pathq);
return GetLastCommonNode(pathp,pathq);
}
};